From Web Data to Visualization via Ontology Mapping

Owen Gilson

Swansea University, UK

December 2008

Outline:

- What is Information Visualization?
- Motivation
- Related Work
- SemViz Pipeline
- Ontologies with Certainty Factors (OCF)
 - Domain Ontology (DO)
 - Visual Representation Ontology (VRO)
 - Semantic Bridge Ontology (SBO)
- Ontology Mapping Algorithm
- Results
- Summary

What is Information Visualization?

• "The use of computer-supported, interactive, visual representations of *abstract data* to amplify *cognition*"

[Card et al., 1999]

Examples

Tree Map

Parallel Coordinates

2D graph

Graph Network

From Tabular Web Data to TreeMap

4 fields: 22 countries... : 220 records...

- Country Name
- Artist Name
- Song Name
- Chart Position

ILOG Discovery [Baudel 2002]

Visualization As Mapping

Motivation:

Tree Map
Parallel Coordinates
2D plot
Graph Network

• • •

"Visualization for Everyone"

Related Work:

Trial and Error

Spot Fire [Shneiderman 1999]

ILOG Discovery [Baudel 2002]

Automatic Visualization

Tableau (Show Me) [Mackinlay 2007]

Problems:

1. How do we get the Web Data? Extract data. Use a Screen Scraper.

```
Artist
Song
<...
</tr>
```

2. What is the source data meaning?

Capture Domain Semantics. Use an Ontology.

3. What can a visualization style convey?

Capture Visual Representation Semantics. Use an Ontology.

4. How do you present "source data meaning" using "visualization meaning"?

Map between Source Data Entities and Target Artefacts. Use Ontology Mapping.

Domain Ontology (DO) : Music

Concept

Weighted Relation ► (0 → 1)

Attribute

SemViz Pipeline (Web Page to Tabular Data)

Tabular Data

SemViz Pipeline (Tabular Data to DO sub-graph)

SemViz Pipeline (DO sub-graph to VRO)

SemViz Pipeline (Score DO to VRO)

SemViz Pipeline (Generate Visualizations)

Visualization Source Data

Level 1	Level 2	Color
Artist	Song	Position
Country	Song	Position
	Artist	Level 1 Level 2 Artist Song Country Song

Country Artist Song Position

...

Visulizations

"Traditional" Ontologies

- Graph Representation of Domain Knowledge
- Syntactically and Semantically rich
- Hierarchy of concepts and properties
- (e.g. Music Ontology Specification (MOS))

- Absolute relations (it exists, or does not exist)
- RDF / OWL

Ontologies with Certainty Factors (OCF)

- (Still a) Graph Representation of Domain Knowledge
- (Can be) Syntactically and Semantically rich
- (Can have a) Hierarchy of concepts and properties
- Weighted relations (0.0 → 1.0)
- Fully connected graph

RDF (with weighted properties through Reification)

Traditional vs Ontologies with Certainty Factors

Traditional OCF (RDF/OWL) (RDF)

Explicit Conceptualisation	Yes	Can be
Syntactically and Semantically rich	Yes	Can be
Hierarchy of concepts	Yes	Can be
Hierarchy of properties	Yes	Can be

Relations	Absolute	Weighted
		$(0.0 \to 1.0)$

Technology	RDF / OWL RI		
Connectedness	Partial	Eully	

Domain Ontology (DO) : Music

Concept

Weighted Relation ► (0 → 1)

Attribute

Visual Representation Ontology (VRO):

2D plot

Semantic Equivalence

DO: Music

complements (0.9)

priorityWrt (0.8)

complements (0.6)

priorityWrt (0.8)

DO	VRO	Relationship / Attribute
synonyms	-	A
instanceHistory	-	A
has	contains	R
complements	complements	R
priorityWrt	priorityWrt	R
isQualitative	isQualitative	A
isQuantitative	isQuantitative	A
isPrimaryKey	isInformational	A
-	isMandatory	A

Mapping Permutations

iTunes:

- Country Name
- Artist Name
- Song Name
- Chart Position

TreeMap:

- Level 0
- Level 1
- Level 2
- Colour

Assuming all fields are mapped only once, there are:

24 permutations

Which visualization is best?

Calculate "Cognitive Value"

Score

Rank

Scoring Algorithm

Based on "Ontology Mapping With Uncertainty" [Mitra et al, 2005]

 $W_D = 1 - |s_{D'} - t_{V'}|$

= 0.9

= 1 - |0.8 - 0.7|

Let Θ be the mapping from DO to VRO

So:
$$V = \Theta(D)$$

 $V' = \Theta(D')$

w_D is the weighting of the concept pair DV.

If:
$$q_{D'} \sim q'_{V'}$$

 $0 \le s_{D'} \le 1$
 $0 \le q'_{V'} \le 1$

$$w_D = \sum_{D' \neq D} f_1(s_{D'}, t_{V'})$$

$$totalw_{\theta} = \sum_{D \in DO} w_D$$

$$f_1(s,t) := 1 - |s-t|$$

Semantic Bridge Ontology (SBO)

- Stores *available* expert knowledge
- Records all possible mappings between all DO's and all VRO's
- Fully-connected graph
- Each mapping has an appropriateness value
- •Default is 100, increased or decreased as necessary.
- 2 purposes:
 - Reduces complexity.
 - Increases accuracy.

iTunes Country Chart to TreeMap

France

Source (iTunes)
Country
Artist Name
Song Name
Chart Position

Target (TreeMap)
Colour
Level 0
Level 1
Level 2

of mapping permutations: 24 # of *visible* map'g permutations: 24

BBC Top 40 to 2D plot

Target (2D plot)
X position
Y position
Width
Height
Text Label

of mapping permutations: 60 # of *visible* map'g permutations: 18

Prefuse (Graph Network)

Source (iTunes)
Country
Song Name
Artist Name

of mapping permutations: 6 # of *visible* map'g permutations: 6

Summary:

- Ontologies with Certainty Factors
- Ontology Mapping
- Pragmatic Visualization Pipeline
 - Domain Ontology (DO)
 - Visual Representation Ontology (VRO)
 - Semantic Bridge Ontology (SBO)
- Scored (and ranked) visualizations
 - Automatic Information Visualization for Non-Experts

Thank you

Owen Gilson Swansea University, UK cs.swan.ac.uk/~csowen